Financial Accounting Recitation 2 (B Term)

Dian Jiao

Columbia Business School

Nov 10, 2023

Road Map

- Recap of Receivables
- Recap of Bond Accounting
- Recap of PP\&E
- Office hour for specific questions

Recognition

- Recognize the potential default on the receivables at sale (matching principle)
- Dr. bad debt expense
- Cr. allowance for doubtful accounts
- B/S and I/S approaches

Write-offs

- Write off both BDE and A / R in case of actual defaults
- Dr. allowance for doubtful accounts
- Cr. accounts receivable
- The net realizable value is unchanged

Reinstatement

- A written-off account is reinstated when a customer pays back the A/R
- Dr. accounts receivable
- Cr. allowance for doubtful accounts
- Record the collection of A / R
- Dr. cash
- Cr. accounts receivable
- BV \& total assets unchanged, cash \uparrow, allowance \uparrow, NV \downarrow
- Conservatism: more allowance reserved for future...

Introduction

- What are bonds?
- You can think of bonds as a way for a company to raise funds
- The companies issue (or sell) bonds to the public in exchange for cash

- Coupon payments (optional)
- You can think of coupon payments as periodic cash payments that the company will make
- At the bond's maturity date, the issuer pays back the principal (face value)
- The market yield is the interest rate that makes the present value and the price of the bond equal to each other

Pricing a Bond

- Two critical components: The coupon payments and the principal

Example

- Assume a company XYZ Ltd has issued a bond with a face value of $\$ 1000$, carrying an annual coupon rate of 5% and maturing in 10 years. The market yield is 7%.

Component 1: The principal amount

- The bond has a face value of $\$ 1000$. How much will it be worth today when it's repaid to the investor in 10 years?

$$
P V(\text { Principal })=\frac{1000}{(1+7 \%)^{10}}=\$ 508
$$

- We account for the TVOM because this accounts for the opportunity cost to the investor: If they didn't invest in this bond, they could've invested it at the market rate of 7%

Pricing a Bond (Cont'd)

Component 2: The coupon payments

- Each year, the investor receives a 5% coupon, which is $5 \% \times 1000=\$ 50$ in dollars

$$
P V(\text { Coupons })=50 \times \frac{1-(1+7 \%)^{-10}}{7 \%}=\$ 351
$$

The price of the bond is the sum of the present value of the principal AND the coupons

$$
P(\text { Bond })=P V(\text { Principal })+P V(\text { Coupons })=\$ 860
$$

Pricing a Bond (Cont'd)

- An example of pricing the bond with Excel

I	J	K
Coupon Rate	5%	
Face Value	1000	
Market Yield	7%	
Periods	10	
PV (Principal)	$\$ 508.35$	$=\operatorname{PV}(0.07,10,0,-1000)$
PV (Coupon)	$\$ 351.18$	$=\operatorname{PV}(0.07,10,-50,0)$
PV (Bond)	$\$ 859.53$	$=\operatorname{PV}(0.07,10,-50,-1000)$

Discounts and Premiums

- In this case, the bond is issued at a discount since the price is lower than the face value
- The relationship depends on the market yield and the coupon rate

(a) At a discount	Price $<$ Face value	Market yield $>$ Coupon rate
(b) At a premium	Price $>$ Face value	Market yield $<$ Coupon rate
(c) At par	Price $=$ Face value	Market yield $=$ Coupon rate

- (a) the company pays LESS than the market does (a discount is therefore offered)
- (b) the company pays MORE than the market does (a premium is therefore charged)
- (C) the company pays the SAME as the market does (a fair game)

Amortization and Discounts

- It is useful to think about amortization in this way: At the issuance of the bond, we have 10 future coupon payments, where the discount will "unfold" for each interest payment
- Each year after the coupon payment, a portion of the total discount should be reduced because that has already been "incurred"
- After the discount for the first interest payment has happened, we should only now record the 9 remaining discounts that will still happen in the future
- The underlying logic is that we expense a portion of the discount on each coupon payment since the source of this discount comes from the fact that coupon rate $<$ market rate

Bond Amortization

Now, let's work on the journal entries...

- At Bond Issuance
Dr. Cash 860
Dr. Bond Discount140
Cr. Bonds Payable 1000
- The first time we make a coupon payment and recognize interest expense for the year

Dr. Interest Expense $60(=860 \times 7 \%)$
Cr. Bond Discount 10
Cr. Cash
50

- Each time we pay the coupon, we are paying out our coupon rate, but we are incurring the interest expense equal to the market rate. We take a portion out of our Bond Discount account because we are paying below the market rate

Bond Amortization (Cont'd)

- The amortization process boils down to just recognizing portions of the total discount over the life of the bond until, eventually, we expense it all and Bond Discount $=0$
- An example of amortizing the bond with Excel

1	A	B	C	D	E	F	G
1	Time	Interest Payment	Interest Expense	Amortization of Bond Discount	Bond Discount	Bonds Payable	Book Value
2		Coupon Rate * Face Value	Market Yield * Previous Book Value	Interest Expense - Interest Payment	Bond Discount - Amortization		Bonds Payable - Bond Discount
3	0				\$140.47	1000	\$859.53
4	1	50	\$60.17	\$10.17	\$130.30	1000	\$869.70
5	2	50	\$60.88	\$10.88	\$119.43	1000	\$880.57
6	3	50	\$61.64	\$11.64	\$107.79	1000	\$892.21
7	4	50	\$62.45	\$12.45	\$95.33	1000	\$904.67
8	5	50	\$63.33	\$13.33	\$82.00	1000	\$918.00
9	6	50	\$64.26	\$14.26	\$67.74	1000	\$932.26
10	7	50	\$65.26	\$15.26	\$52.49	1000	\$947.51
11	8	50	\$66.33	\$16.33	\$36.16	1000	\$963.84
12	9	50	\$67.47	\$17.47	\$18.69	1000	\$981.31
13	10	50	\$68.69	\$18.69	(\$0.00)	1000	\$1,000.00
14	Total	500	640.4716308	140.4716308			

Bond Amortization Graph

- This figure only illustrates the change over time; the change is typically not linear

PP\&E

- Ending PP\&E $=$ Beginning PP\&E + Purchase - Sale/Disposal (All in gross values)
- Ending Acc Dep = Beginning Acc Dep + Dep Exp - Acc Dep Related to Sale/Disposal
- Gain/Loss on Sale of PP\&E = Proceeds - (Gross Value of PP\&E - Related Acc Dep) (Gain if positive and loss if negative)
- Typical roadmap: 1) Use one equation to back out one unknown, $x ; 2$) Use the intermediary result, x, to back out other unknowns in other equations

